Главная / Каталог

Баричев С. Криптография без секретов

Рассмотрим небольшой пример шифрования с бесконечным ключом. В качестве ключа примем текст

“БЕСКОНЕЧНЫЙ_КЛЮЧ....”.

Зашифруем с его помощью текст “ШИФР_НЕРАСКРЫВАЕМ”. Шифрование оформим в таблицу:

ШИФРУЕМЫЙ_ТЕКСТ

24

8

20

16

19

5

12

27

9

32

18

5

10

17

18

БЕСКОНЕЧНЫЙ_КЛЮЧ

1

5

17

10

14

13

5

23

13

27

9

32

10

11

30

ЩРДЪАТТССЦЪЫДФЬП

25

13

4

26

0

18

17

17

22

26

27

4

20

28

15

Исходный текст невозможно восстановить без ключа.

Наложение белого шума в виде бесконечного ключа на исходный текст меняет статистические характеристики языка источника. Системы одноразового использования теоретически не расшифруемы, так как не содержат достаточной информации для восстановления текста.

Почему же эти системы неприменимы для обеспечения секретности при обработке информации? Ответ простой - они непрактичны, так как требуют независимого выбора значения ключа для каждой буквы исходного текста. Хотя такое требование может быть и не слишком трудным при передаче по прямому кабелю Москва - Нью-Йорк, но для информационных оно непосильно, поскольку там придется шифровать многие миллионы знаков.

Посмотрим, что получится, если ослабить требование шифровать каждую букву исходного текста отдельным значением ключа.

Системы шифрования Вижинера

Начнем с конечной последовательности ключа

k = (k0 ,k1 ,...,kn),

которая называется ключом пользователя, и продлим ее до бесконечной последовательности, повторяя цепочку. Таким образом, получим рабочий ключ

k = (k0 ,k1 ,...,kn), kj = k(jmod r, 0 ( j < ( .

Например, при r = ( и ключе пользователя 15 8 2 10 11 4 18 рабочий ключ будет периодической последовательностью:

15 8 2 10 11 4 18 15 8 2 10 11 4 18 15 8 2 10 11 4 18 ...

Определение. Подстановка Вижинера VIGk определяется как

VIGk : (x0, x1, ..., xn-1) ( (y0, y1, ..., yn-1) = (x0+k, x1+k,. .., xn-1+k).

Таким образом:

1) исходный текст x делится на rфрагментов

xi = (xi , xi+r , ..., xi+r(n-1)), 0 ( i < r;

2) i-й фрагмент исходного текста xi шифруется при помощи подстановки Цезаря Ck :

(xi , xi+r , ..., xi+r(n-1)) ( (yi , yi+r , ..., yi+r(n-1)),

Вариант системы подстановок Вижинера при m=2 называется системой Вернама (1917 г).

В то время ключ k=(k0 ,k1 ,...,kк-1) записывался на бумажной ленте. Каждая буква исходного текста в алфавите, расширенном некоторыми дополнительными знаками, сначала переводилась с использованием кода Бодо в пятибитовый символ. К исходному тексту Бодо добавлялся ключ (по модулю 2). Старинный телетайп фирмы AT&T со считывающим устройством Вернама и оборудованием для шифрования, использовался корпусом связи армии США.

Очень распространена плохая с точки зрения секретности практика использовать слово или фразу в качестве ключа для того, чтобы k=(k0 ,k1 ,...,kк-1) было легко запомнить. В ИС для обеспечения безопасности информации это недопустимо. Для получения ключей должны использоваться программные или аппаратные средства случайной генерации ключей.

Пример. Преобразование текста с помощью подстановки Вижинера (r=4)

Исходный текст (ИТ1):

НЕ_СЛЕДУЕТ_ВЫБИРАТЬ_НЕСЛУЧАЙНЫЙ_КЛЮЧ

Ключ: КЛЮЧ

Разобьем исходный текст на блоки по 4 символа:

НЕ_С ЛЕДУ ЕТ_В ЫБИР АТЬ_ НЕСЛ УЧАЙ НЫЙ_ КЛЮЧ

и наложим на них ключ (используя таблицу Вижинера):

H+К=Ч, Е+Л=Р и т.д.

Получаем зашифрованный (ЗТ1) текст:

ЧРЭЗ ХРБЙ ПЭЭЩ ДМЕЖ КЭЩЦ ЧРОБ ЭБЮ_ ЧЕЖЦ ФЦЫН

Можно выдвинуть и обобщенную систему Вижинера. ЕЕ можно сформулировать не только при помощи подстановки Цезаря.

Пусть x - подмножество симметрической группы SYM(Zm).

Определение. r-многоалфавитный ключ шифрования есть r-набор ( = ((0, (1, ..., (r-1) с элементами в x.

Обобщенная система Вижинера преобразует исходный текст (x0, x1 ,..., xn-1) в шифрованный текст (y0 ,y1 ,...,yn-1) при помощи ключа ( = ((0, (1, ..., (r-1) по правилу

VIGk : (x0 ,x1 ,...,xn-1) ( (y0 ,y1 ,...,yn-1) = ((0(х0), (1(х1), ..., (n-1(xn-1)),