Сверхпроводимость

Файл : bestref-87366.rtf (размер : 3,334,468 байт)

Сверхпроводимость

Чуть более 10 лет назад в средствах массовой информации стали упоминаться такие понятия как "сверхпроводимость", " высокотемпературная сверхпроводимость", "низко - температурная сверхпроводимость" термины, которые ранее обычно употребляли только специалисты - физики. Сообщалось о революционном научном открытии, о прорыве в микроэлектронике и наступлении новой эры в техническом развитии общества.

Почему было уделено тогда, и тем более сегодня, такое внимание явлению, известному ученым и специалистам уже десятки лет, но с которым большинство людей сталкивались разве что в произведениях писателей-фантастов? В чем суть этого явления и какие оно сулит перспективы? Чтобы ответить на эти вопросы, обратимся к истории открытия сверхпроводимости и поясним основные понятия, связанные с ним.

В 1911г. голландский физик Х. Камерлинг-Оннес, исследуя электрическое сопротивление ртути при очень низких температурах, неожиданно для себя обнаружил, что при температуре , равной 4,15 К (это приблизительно - 2690С), сопротивление образца вдруг резко упало до нуля, в то время как такие прекрасные проводники, как золото и медь при тех же температурах имели весьма малое, но вполне измеримое остаточное сопротивление(10-9 Ом*см). Это явление Камерлинг-Оннес назвал "сверхпроводимость", а температуру Тс, при которой происходит переход из нормального в сверхпроводящее состояние, - "критической" или "температурой перехода".

Некоторое время спустя обнаружили, что подобный же эффект наблюдается и в других металлах, например, алюминии, свинце, индии. Из чистых металлов самую высокую Тс имеет ниобий: Тс(Nb)~10 К.

С течением времени учеными достигался дальнейший рост критических температур сверхпроводников. Правда, медленно, но довольно постоянными темпами (рис.1). И только в 1973 г. была зарегистрирована самая высокая Тс в сплаве ниобия с германием (NbGe) - 23,2 К.

В конце 1986 г. мир облетела сенсационная весть: ученые Ж. Бендорц и К. Мюллер, работающие в Цюрихе в исследовательской лаборатории известной компьютерной фирмы IBM, сообщили о зафиксированном ими резком падении сопротивления керамического металлооксидного образца Ba-La-Cu-O при температуре 35К! А вскоре поступило подтверждение других исследователей, в том числе российских, о наблюдении этого явления.

В первых числах марта 1987 г. стало известно о новом замечательном открытии: в Алабамском и Хьюстонском университетах группой М. К. Ву с сотрудниками на керамике Y-Ba-Cu-O (так называемой иттриевой керамике)была достигнута температура сверхпроводящего перехода Тс~92 К, что гораздо выше температуры кипения жидкого азота (77 К, или -1960С), дешевого и доступного хладагента, производимого промышленностью в больших количествах.

На сегодняшний день уже имеются материалы, в которых температура перехода в сверхпроводящее состояние достигает 135 К, и нет оснований полагать, что это уже предел.

Интерес к сверхпроводимости принял массовый характер. В терминологии физиков появились два понятия: "низкотемпературная сверхпроводимость" (НТСП) и "высокотемпературная сверхпроводимость" (ВТСП). Авторам открытия ВТСП Ж. Бендорцу и К. Мюллеру была присуждена Нобелевская премия.

В течении многих лет считали, что сверхпроводящее состояние, в первую очередь, характеризуется бесконечной проводимостью. В 1933 г. немецкими физиками Мейснером и Оксенфельдом было открыто второе фундаментальное свойство сверхпроводников - идеальный диамагнетизм. Эффект Мейснера (рис. 2)состоит в том, что при охлаждении массивного сверхпроводника ниже температуры перехода происходит выталкивание магнитного поля из толщи сверхпроводника образца в окружающее магнитное поле, так что внутри образца (за исключением тонкого поверхностного слоя толщиной 100...1000 ангстрем) оно всегда равно нулю. Именно эти два свойства - бесконечная проводимость и идеальный диамагнетизм - являются главными характеристиками сверхпроводимости.

Исследования открыли ещё один важный эффект. Если увеличивать напряженность магнитного поля, то при некоторой величине его Н=Нс, называемой "критическое магнитное поле", сверхпроводимость скачком исчезает и образец переходит в "нормальное" состояние. То же самое происходит при увеличении тока, пропускаемого через сверхпроводник. Сверхпроводимость разрушается при достижении током критической величины I=Ic.