Автоматическая система регулирования

5

6

7

8

9

10

yi

0

0

0.5

0.71

0.8

0.91

0.98

0.99

0.995

1

1

1

0.5

0.29

0.2

0.09

0.02

0.01

0.005

0

0

0

-0.693

-1.238

-1.609

-2.408

-3.912

-4.605

-5.298

-∞

Преобразовав выражение (2.3), получим:

откуда по методу наименьших квадратов найдем постоянную времени:

Таким образом динамическая характеристика первого порядка без запаздывания будет иметь вид:

Вычислим аналитические значения функции, их отклонения от экспериментальных значений, а также квадраты отклонений и сведем их в

Таблица 7

Результаты расчета

i

1

2

3

4

5

6

7

8

9

10

yi

0

0

0.5

0.71

0.8

0.91

0.98

0.99

0.995

1

yiанал

0

0.46

0.708

0.843

0.915

0.954

0.975

0.987

0.993

0.996

yi

0

-0.46

-0.208

-0.133

-0.115

-0.044

4.8∙10-3

3.4∙10-3

2.2∙10-3

3.9∙10-3

0.000

0.212

0.043

0.018

0.013

1.9∙10-3

2.3∙10-5

1.1∙10-5

4.9∙10-6

1.5∙10-5

Далее находим сумму квадратов отклонений:

Динамическая модель объекта первого порядка без запаздывания является наименее точной, поэтому ее применение не целесообразно при моделировании динамики объекта. Ниже приведен проверочный расчет динамической модели объекта первого порядка без запаздыванием и модели второго порядка без запаздыванием на ЭВМ в системе MathCad.

2.3. Модель объекта первого порядка с запаздыванием

Динамическая модель первого порядка с запаздыванием представляет собой неоднородное дифференциальное уравнение первого порядка:

(2.4)

гдеT - постоянная времени объекта;

k - коэффициент передачи при 50% номинального режима;

- время запаздывания.

Решением уравнения (2.1) будет экспоненциальная зависимость сигнала на выходе от времени:

(2.5)

гдеy0=0 - начальное состояние выхода объекта;

k.x=yуст.=10 - установившееся состояние выхода объекта.

Проведем преобразования, аналогичные модели без запаздывания

или запишем в виде системы :

(2.6)

где берется из табл. 7.

Так как , и , то все уравнения содержащие эти элементы в расчете участвовать не будут.

Решим систему (2.6) методом наименьших квадратов. Составим матрицы:

- искомых величин:

- правой части системы:

- левой части системы:

- произведение

- произведение

Таким образом получили матричное уравнение:

Находим главный определитель:

Подставляя матрицу поочередно в первый и второй столбец матрицы , находим вспомогательные определители:

Находим постоянную времени и время задержки: