Расчет кран-балки

Расчет кран-балки

Файл : kursovik.DOC (размер : 226,816 байт)

PAGE PAGE 2

Министерство сельского хозяйства РФ

ФГОУВПО

Пермская государственная сельскохозяйственная

академия имени Д.Н.Прянишникова

Кафедра деталей машин

КУРСОВАЯ РАБОТА

по дисциплине: «Основы конструирования»

на тему: «Расчет мостового однобалочного крана»

Выполнил: студент группы М-51, шифр М-01-157

В.М. Соловьев

Проверил:

Кандидат технических наук доцент В.С. Новосельцев

Пермь 2005

Задание.

Рассчитать механизм передвижения мостового однобалочного крана (кран-балки):

грузоподъемностью Q=1,7 т;

пролет крана LK= 10,6 м;

скорость передвижения V = 0,48 м/с;

высота подъема Н= 12 м;

режим работы средний;

управление с пола.

Кран работает в мастерской по ремонту сельскохозяйственной техники.

Мостовые однобалочные краны грузоподъемностью 1...5т регламентированы ГОСТ 2045 - 89*.

В соответствии с прототипом выбираем кинематическую схему однобалочного мостового крана (кран-балки) с центральным приводом и передвижной электрической талью (рис. 1). Согласно ГОСТ 22584 - 96 по грузоподъемности 1 т выбираем электроталь ТЭ 100-521 [1, стр. 215].

Рисунок 1. Мостовой однобалочный кран.

Расчет механизма передвижения крана проводим в следующем порядке.

1. Определяем размеры ходовых колес по формуле

(1)

Максимальную нагрузку на колесо вычисляем при одном из крайних положений электротали.

По ГОСТ 22584-96 [1, стр. 215] принимаем массу тали mт =180 кг = 0,18т (ее вес G7 = mTg ≈ 0,18×10 = 1.8кН) и длину L = 870 мм. Массу крана с электроталью выбираем приближенно по прототипу [1, стр. 214] mк ≈ 2,15т. Тогда вес крана Gк = mкg ≈ 2,15 × 10 = 21,5 кН. Ориентировочно принимаем

l ≈ L ≈ 0,87 м.

Для определения нагрузки Rmax пользуемся уравнением статики

∑M2 = 0 или – Rmax Lк+ (GГ+ GT)×(Lк – l) + (Gк – GT) × 0,5Lк =0(2)

откуда

Rmax= =(3)

≈ 27 кН

При общем числе ходовых колес Zk = 4 нагрузка приходится на те два колеса крана, вблизи которых расположена тележка. Тогда

Rmax = R/2 = 27/2 = 13,5 кН = 13500 Н.(4)

Следовательно,

Согласно ГОСТ 3569 - 74 [1, стр. 252] выбираем крановое двухребордное колесо диаметром Dк = 200мм. Диаметр цапфы dц = Dк/(4...6) ≈ (50...35) мм. Принимаем dц = 50 мм.

Для изготовления колес используем сталь 45, способ термообработки нормализация (НВ ≈ 200). Колесо имеет цилиндрическую рабочую поверхность и катится по плоскому рельсу. При Dк ≤ 200 мм принимаем плоский рельс прямоугольного сечения [1, стр. 252], выбирая размер а по условию: а < В. При DK ≤ 200 мм ширина поверхности качения B = 50 мм. Принимаем а = 40 мм.

Рабочая поверхность контакта b = а - 2R = 40 - 2 × 9 = 22 мм.

Коэффициент влияния скорости Kv=1 +0,2 V = 1 + 0,2 ×0,48= 1,096.

Для стальных колес коэффициент пропорциональности а1 = 190.

Предварительно выбранные ходовые колеса проверяем по контактным напряжениям.

При линейном контакте

σк.л = аl = 493 МПа(5)

Поскольку допустимые контактные напряжения для стального нормализованного колеса [σкл] =450...500 МПа, то условие прочности выполняется.

2. Определяем статическое сопротивление передвижению крана.

Поскольку кран работает в помещении, то сопротивление от ветровой нагрузки Wв не учитываем, т. е.

WУ = Wтр + Wук(6)

Сопротивление от сил трения в ходовых частях крана:

(7)

По таблице 1.3 [1, стр. 9] принимаем, μ = 0,3 мм, а по таблице 1.4 для колес на подшипниках качения ƒ=0,015, Кр= 1,5. Тогда,

Сопротивление движению от возможного уклона пути.

Wyк = (G+ Gк)×α = (17 + 21,5)×0,0015 = 0,058 кН = 58 Н.(8)

Значения расчетного уклона а указаны на с. 9.Таким образом, получаем

Сила инерции при поступательном движении крана

Fи = (Q + mк)v/tп = (1700 + 2150) х 0,48/5 = 370 Н,(9)

где tп – время пуска; Q и mк – массы соответственно груза и крана, кг.

Усилие, необходимое для передвижения крана в период пуска (разгона),

(10)

3. Подбираем электродвигатель по требуемой мощности

(11)

Предварительно принимаем η = 0,85 и ψп.ср.= 1,65 (для асинхронных двигателей с повышенным скольжением) [1, стр. 49].