Жаростойкие и жаропрочные никелевые сплавы, применяемые в авиационных двигателях, и их термическая обработка

Файл : bestref-49455.doc (размер : 91,136 байт)

МИНИСТЕРСТВО ТРАНСПОРТА РОССИЙСКОЙ ФЕДЕРАЦИИ

ГОСУДАРСТВЕННАЯ СЛУЖБА ГРАЖДАНСКОЙ АВИАЦИИ

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ГРАЖДАНСКОЙ АВИАЦИИ

Реферат по дисциплине

«МАТЕРИАЛОВЕДЕНИЕ» на тему:

«Жаростойкие и жаропрочные никелевые сплавы, применяемые в авиационных двигателях, и их термическая обработка»

2001 год

В авиационных двигателях широкое применение нашли жаростойкие и жаропрочные никелевые сплавы. В качестве жаростойких применяют сплавы ХН60ВТ (ВЖ98, ЭИ868), ХН50ВМТЮБ (ЭП648), ХН68ВМТЮК (ЭП693), ХН56ВМТЮ (ЭП199) и др.

Термическая обработка сплавов в значительной мере определяется выбранной системой легирования. Так, например, сплав ХН60ВТ имеет низкую концентрацию ((-образующих элементов, поэтому не содержит в своей структуре ((-фазу, отличается повышенной пластичностью и не требует термической обработки после сварки. Структура сплава состоит из никелевого (-твёрдого раствора, в котором содержится небольшое количество частиц (-W и карбидной фазы Ni3W3C и Cr23C6. однако другие сплавы, у которых повышение жаропрочности обеспечивается путём упрочнения (-твёрдого раствора и выделения дисперсных частиц упрочняющей ((-фазы (сплавы ХН50ВМТЮБ, ХН68ВМТЮК, ХН56ВМТЮ), подвергаются упрочнению при термической обработке, состоящей из закалки и старения.

Температура закалки выбирается из условия получения однородного твёрдого раствора. Так, например, сплав ХН50ВМТЮБ подвергают закалке на воздухе от температуры 1140(С и последующему старению при температуре 900(С в течение 5 ч, а сплав ХН68ВМТЮК закаливают от температуры 1100(С с последующим старением при температуре 900(С в течение 5 ч. При старении из пересыщенного твёрдого раствора выделяются дисперсные частицы упрочняющей ((-фазы и сплавы упрочняются.

Наличие ((-фазы повышает жаропрочность и одновременно сообщает сплавам склонность к образованию горячих трещин при сварке и термической обработке, необходимость в термической обработке деталей после сварки или подварки технологических, а также эксплуатационных дефектов.

Свойства жаропрочных никелевых сплавов для лопаток и дисков газовых турбин определяются термической стабильностью структуры, размерами, формой и количеством упрочняющей ((-фазы, прочностными характеристиками (-твёрдого раствора, оптимальным соотношением параметров кристаллических решёток (- и ((-фаз, распределением карбидной фазы и другими факторами. Обычно жаропрочные сплавы упрочняются путём целенаправленного многокомпонентного легирования. Суть многокомпонентного легирования состоит в обеспечении жаропрочности путём совершенствования гетерофазного строения, включающего контролируемое выделение частиц упрочняющей ((-фазы, обеспечении её термической стабильности, целенаправленном изменении морфологии, параметров кристаллических решёток (- и ((-фаз, их влияния на дислокационную структуру сплавов, а также на протекание диффузионных процессов.

Основные требования к материалам для лопаток турбин обусловлены самим развитием конструкции двигателей, непрерывным повышением жаропрочности, пластичности, сопротивления термической и малоцикловой усталости, стойкости к воздействию газовой среды. Материалы для лопаток турбин современных двигателей должны обладать высокой сопротивляемостью разрушению при термической и малоцикловой усталости, которая является в настоящее время основным видом разрушения. Опасность разрушения усугубляется поверхностными реакциями, связанными с газовой коррозией, разупрочнением границы зёрен.

Для изготовления лопаток турбин исползуют деформируемые и литейные сплавы. Деформируемые сплавы обладают ограниченными возможностями обеспечения необходимой жаропрочности, поскольку дальнейшее их легирование ведёт к практически полной потере их технологической пластичности при деформации. Ведущее место среди жаропрочных сплавов принадлежит литейным сплавам, новым направленно кристализованным и монокристализованным сплавам, которые широко применяются в современных высокотемпературных двигателях. Совершенствование технологии литья и многокомпонентного легирования обеспечило существенное увеличение рабочей температуры сплавов, причём и направленные и монокристаллические сплавы группы ЖС стали более пластичными. Предельные рабочие температуры нагрева деформируемых сплавов не превышают 1000(С.