Бозе-Эйнштейновский конденсат

Сверхтекучий 3Не. Редкий изотоп 3Не начали исследовать лишь в 1949. В первых экспериментах 3Не не был сверхтекучим при температурах выше 1 К. Однако физики-теоретики предсказывали, что эта жидкость может стать сверхтекучей, если ее охладить до температур ниже 1 К. Благодаря достижениям техники низких температур группе ученых из Корнеллского университета удалось охладить жидкий 3Не до температур ниже 0,003 К и обнаружить фазовый переход в жидкости. Последующие измерения подтвердили, что жидкий 3Не становится сверхтекучим при охлаждении до сверхнизких температур.

Многие свойства сверхтекучего 3Не весьма отличны от свойств 4Не. В 3Не сверхтекучая жидкость состоит из пар атомов 3Не, связанных силами взаимного притяжения. Это похоже на ситуацию в металлических сверхпроводниках, сверхпроводимость которых обусловлена образованием связанных пар электронов. Еще одно различие состоит в том, что атомы 3Не имеют магнитный момент, а атомы 4Не – нет. Это означает, что на сверхтекучий 3Не должны действовать внешние магнитные поля. Дальнейшие исследования сделают более понятной квантовую природу сверхтекучести.

СВЕРХПРОВОДИМОСТЬ, cостояние, в которое при низкой температуре переходят некоторые твердые электропроводящие вещества. Сверхпроводимость была обнаружена во многих металлах и сплавах и в некоторых полупроводниковых и керамических материалах, число которых все возрастает. Два из наиболее удивительных явлений, которые наблюдаются в сверхпроводящем состоянии вещества, – исчезновение электрического сопротивления в сверхпроводнике и выталкивание магнитного потока из его объема. Первый эффект интерпретировался ранними исследователями как свидетельство бесконечно большой электрической проводимости, откуда и произошло название сверхпроводимость.

Исчезновение электрического сопротивления может быть продемонстрировано возбуждением электрического тока в кольце из сверхпроводящего материала. Если кольцо охладить до нужной температуры, то ток в кольце будет существовать неограниченно долго даже после удаления вызвавшего его источника тока. Магнитный поток – это совокупность магнитных силовых линий, образующих магнитное поле. Пока напряженность поля ниже некоторого критического значения, поток выталкивается из сверхпроводника. Твердое тело, проводящее электрический ток, представляет собой кристаллическую решетку, в которой могут двигаться электроны. Решетку образуют атомы, расположенные в геометрически правильном порядке, а движущиеся электроны – это электроны с внешних оболочек атомов. Поскольку поток электронов и есть электрический ток, эти электроны называются электронами проводимости. Если проводник находится в нормальном (несверхпроводящем) состоянии, то каждый электрон движется независимо от других. Способность любого электрона перемещаться и, следовательно, поддерживать электрический ток ограничивается его столкновениями с решеткой, а также с атомами примесей в твердом теле. Чтобы в проводнике существовал ток электронов, к нему должно быть приложено напряжение; это значит, что проводник имеет электрическое сопротивление. Если же проводник находится в сверхпроводящем состоянии, то электроны проводимости объединяются в единое макроскопически упорядоченное состояние, в котором они ведут себя уже как «коллектив»; на внешнее воздействие реагирует также весь «коллектив». Столкновения между электронами и решеткой становятся невозможными, и ток, однажды возникнув, будет существовать и в отсутствие внешнего источника тока (напряжения). Сверхпроводящее состояние возникает скачкообразно при температуре, которая называется температурой перехода. Выше этой температуры металл или полупроводник находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Температура перехода данного вещества определяется соотношением двух «противоположных сил»: одна стремится упорядочить электроны, а другая – разрушить этот порядок. Например, тенденция к упорядочиванию в таких металлах, как медь, золото и серебро, столь мала, что эти элементы не становятся сверхпроводниками даже при температуре, лежащей лишь на несколько миллионных кельвина выше абсолютного нуля. Абсолютный нуль (0 К, –273,16 С) – это нижняя граница температуры, при которой вещество теряет все свое тепло. Сверхпроводящее состояние физики называют макроскопическим квантово-механическим состоянием. Квантовая механика, которой обычно пользуются для описания поведения вещества в микроскопическом масштабе, здесь применяется в макроскопическом масштабе. Именно то обстоятельство, что квантовая механика здесь позволяет объяснить макроскопические свойства вещества, и делает сверхпроводимость столь интересным явлением.