Общая энергетика

Общая энергетика

Файл : energetica.doc (размер : 110,592 байт)

PAGE PAGE 8

Вопросы.

Нарисовать принципиальную технологическую схему трёхконтурной АЭС и объяснить назначение всех элементов схемы. Основные особенности АЭС.

Нарисовать схему конденсатора турбины и объяснить назначение и устройство.

Схема снабжения котлов газом. Подготовка к сжиганию газообразного топлива

Влияние ТЭЦ на окружающую среду.

Технологическая схема КЭС. Назначение каждого элемента схемы. Основные особенности КЭС.

Нарисовать принципиальную технологическую схему трёхконтурной АЭС и объяснить назначение всех элементов схемы.

Принципиальная технологическая схема трёхконтурной АЭС выглядит следующим образом:

На схеме обозначены:

Ядерный реактор с первичной биологической защитой.

Вторичная биологическая защита.

Турбина.

Генератор.

Конденсатор.

Циркуляционные насосы.

Регенеративный теплообменник.

Резервуар с водой.

Парогенератор.

Промежуточный теплообменник.

Т – повышающий трансформатор.

ТСН – трансформатор собственных нужд.

РУ ВН – распределительное устройство высокого напряжения (110 кВ и выше).

РУ СН – распределительное устройство собственных нужд.

I; II; III – контуры АЭС.

Установка, в которой происходит управляемая цепная ядерная реакция, называется ядерным реактором 1. В него загружается ядерное топливо, например – уран –238. Ядерный реактор служит для нагрева теплоносителя и представляет из себя, в принципе, котёл.

Биологическая защита 2 выполняет функции изолятора реактора от окружающего пространства для того, чтобы в него не проникли мощные потоки нейтронов, альфа-, бета-, гамма- лучи и осколки деления. Биологическая защита предназначена для создания безопасных условий работы обслуживающего персонала.

Турбина 3 предназначена для преобразования энергии пара в механическую энергию вращения ротора электрического генератора. Генератор 4 вырабатывает электрическую энергию, которая поступает на повышающий трансформатор Т, где преобразуется до необходимых величин для дальнейшей передачи в линии электропередач. Часть энергии также передаётся на ТСН – понижающий трансформатор собственных нужд.

Отработанный в турбине пар поступает в конденсатор. Конденсатор 5 служит для охлаждения пара, который, конденсируясь, затем подаётся циркуляционным насосом 6 через регенеративный обменник 7 в парогенератор 9. В регенеративном обменнике вода охлаждается до исходной величины.

Разогретый в реакторе теплоноситель первого контура (Na) отдаёт тепло в промежуточном теплообменнике 10 теплоносителю второго контура (Na). А тот, в свою очередь, отдаёт тепло рабочему телу(H2O) в парогенераторе.

Циркуляционные насосы служат для движения теплоносителя в контурах схемы, а также для подачи охлаждающей воды в конденсатор из резервуара 8.

Таким образом, принципиально АЭС отличаются от ТЭС только тем, что рабочее тело на них получает тепло в парогенераторе при сжигании ядерного топлива в ядерном реакторе, а не органического топлива в котлах, как это имеет место на ТЭС.

Многоконтурная схема АЭС обеспечивает радиационную безопасность и создаёт удобства для обслуживания оборудования. Выбор числа контуров определяется в зависимости от типа реактора и свойств теплоносителя, характеризующих его пригодность для использования в качестве рабочего тела в турбине.

Особенности АЭС:

Атомные электрические станции не зависят от месторасположения источника сырья, а потому могут сооружаться в любом географическом месте, в том числе и труднодоступном.

Для работы АЭС требуется небольшое количество топлива (100-150 т. в год).

Атомные станции не загрязняют атмосферу. Выбросы радиоактивных газов и аэрозолей не превышают величин, разрешённых санитарными нормами.

АЭС могут работать по свободному графику нагрузки.

Коэффициент полезного действия атомных станций 35-38 %.

Нарисовать схему конденсатора турбины и объяснить назначение и устройство.

Конденсатор – устройство, предназначенное для охлаждения и конденсации пара, выходящего из турбины.

Экономичность работы паровой турбины в большой степени зависит от конечного давления пара, с понижением которого увеличивается используемый тепловой перепад и возрастает КПД турбоустановки.