Симметрия и асимметрия

Файл : симм и ассим.doc (размер : 159,744 байт)

Прошли тысячелетия, прежде чем человечество в ходе своей общественно-производственной деятельности осознало необходимость выразить в определенных понятиях установленные им прежде всего в природе две тенденции: наличие строгой упорядоченности, соразмерности, равновесия и их нарушения.

Люди давно обратили внимание на правильность формы кристаллов, геометрическую строгость строения пчелиных сот, последовательность и повторяемость расположения ветвей и листьев на деревьях, лепестков, цветов, семян растений и отобразили эту упорядоченность в своей практической деятельности, мышлении и искусстве.

Понятие «симметрия» употреблялось в двух значениях. В одном смысле симметричное означало нечто пропорциональное; симметрия показывает тот способ согласования многих частей, с помощью которого они объединяются в целое. Второй смысл этого слова — равновесие.

Греческое слово (((((((( означает однородность, соразмерность, пропорциональность, гармонию.

Познавая качественное многообразие проявлений порядка и гармонии в природе, мыслители древности, особенно греческие философы, пришли квыводу о необходимости выразить симметрию и в количественных отношениях, при помощи геометрических построений и чисел.

Симметрия форм предметов природы как выражение пропорциональности, соразмерности, гармонии подавляла древнего человека своим совершенством, и это было использовано религией, различными представлениями мистицизма, пытавшимися истолковать наличие симметрии в объективной действительности для доказательства всемогущества богов, якобы вносящих порядок и гармонию в первоначальный хаос. Так, в учении пифагорейцев симметрия, симметричные фигуры и тела (круг и шар) имели мистическое значение, являлись воплощением совершенства.

Следует обратить внимание и на учение Пифагора о гармонии. Известно, что если уменьшить длину струны или флейты вдвое, тон повысится на одну октаву. Уменьшению в отношении 3:2 и 4:3 будут соответствовать интервалы квинта и кварта. То, что важнейшие гармонические интервалы получаются при помощи отношений чисел 1, 2 и 3, 4, пифагорейцы использовали для своих мистических выводов о том, что «все есть число» или «все упорядочивается в соответствии с числами». Сами эти числа 1, 2, 3, 4 составляли знаменитую «тетраду». Очень древнее изречение гласит: «Что есть оракул дельфийский? Тетрада! Ибо она есть музыкальная гамма сирен». Геометрическим образом тетрады является треугольник из десяти точек, основание которого составляют 4 точки плюс 3, плюс 2, а одна находится в центре.

В геометрии, механике — всюду, где мы имеем дело с отрезками прямых, мы встречаемся и с понятиями меры, сравнения и соотношения. Эти понятия являются отражением реальных отношений между предметами в объективном мире. Чтобы пояснить это положение, можно выбрать на данной прямой АВ любую третью точку С. Таким образом, совершается переход от единства к двойственности, и мысль этим самым приводит к понятию пропорции. Следует подчеркнуть, что соотношение есть количественное сравнение двух однородных величин, или число, выражающее это сравнение. Про-порция есть результат согласования или равноценности двух или нескольких соотношений. Следовательно, необходимо наличие не менее трех величин (в рассматриваемом случае прямая и два ее отрезка) для определения пропорции. Деление данного отрезка прямой АВ путем выбора третьей точки С, находящейся между А и В, дает возможность построить шесть различных возможных соотношений:

a:b ; a:c ; b:a ; b:c ; c:a ; c:b

при условии отметки соответствующей длины отрезков прямой бук-вами «а», «b», «с» и применения к данной длине любой системы мер. Проанализировав возможные случаи деления отрезка АВ на две части, мы приходим к выводу, что отрезок можно делить на:

1) две симметрические части a=b; 2) a:b = c:a

Так как c = a + b, то

a/b = (a + b)/a ;

( (a + b)/a очевидно, превосходит единицу); дело обстоит так же и в отношении а/b; значит, «а» превосходит «b» и точка «С» стоит ближе к В, чем к A.

Это соотношение a:b = c:a или AC/CB = AB/AC

может быть выражено следующим образом: длина АВ была разделе-на на две неравные части таким образом, что большая из ее частей относится к меньшей, как длина всего отрезка АВ относится