Первое начало термодинамики

Файл : one begin.doc (размер : 73,216 байт)

Министерство образования РФ

Самарская государственная экономическая академия

Реферат (отработка семинара №7).

Первое начало термодинамики.

Выполнил: студент СГЭА факультета

систем управления группы М.О.-1

1 курса Манагаров Р.И.

Проверил: Мирошников Юрий Фёдорович

Самара 2002

Закон представляет формулировку принципа сохранения энергии для термодинамических

систем. Он формулируется следующим образом:

При переходе системы из состояния A в состояние B сумма работы и теплоты, полученных системой от окружающей среды, определяется только состояниями A и B; эта сумма не зависит от того, каким способом осуществляется переход из A в B.

Это означает, что существует такая величина E, характеризующая внутреннее состояние системы, что разность ее значений в состояниях A и B определяется соотношением

EB–EA = Q–L ,

(1)

где (–L) – работа, совершенная средой над системой, а Q – количество тепла, полученное системой от окружающей среды (количество энергии, передаваемое системе термическим образом, т.е. в форме, отличной от работы). Величина E называется внутренней энергией системы.

Для бесконечно малого изменения состояния

dE = δ Q–δ L ,

(2)

или, используя выражение для δ L,

dE = δ Q–PdV .

(3)

Таким образом, изменение внутренней энергии системы равно сумме полученного тепла и совершенной над системой работы. (1)

Пример: Рассмотрим систему, состоящую из определенного количества воды в сосуде. Энергию системы можно увеличить двумя путями. Первый: можно нагревать сосуд на огне. При этом объем воды почти не увеличивается, т.е. dV = 0 и, следовательно, работа не производится. Второй путь: опустим в воду установку с вращающимися лопастями и путем трения увеличим температуру воды до того же значения, что и в первом случае. Конечные состояния системы и приращения ее энергии в обоих случаях одни и те же, но во втором случае увеличение энергии обусловлено работой.

Эквивалентность теплоты и механической работы становится особенно ясной, если рассмотреть циклический процесс. Так как начальное и конечное состояния цикла одинаковы, то изменение энергии равно нулю (EA = EB) и, следовательно,

L = Q ,

(4)

т.е. работа, совершенная системой во время цикла, равна количеству теплоты, поглощенному системой. (4)

Теплота измеряется в единицах энергии – эргах, джоулях и калориях. Соотношение между джоулем и калорией имеет вид

1 кал = 4.18 Дж .

(5)

Это – механический эквивалент теплоты.

Величины Q и L не являются функциями состояния системы; они зависят от способа перехода из состояния А в В. Соответственно этому δ Q и δ L не являются полными дифференциалами. Это обстоятельство и отмечается использованием символа δ, а не d. (1)

Применим первый закон к системам типа однородной жидкости, состояния которых определяются двумя из трех переменных P, V и T. В этом случае любая функция состояния системы и, в частности, внутренняя энергия E будет функцией двух переменных, выбранных в качестве независимых.

Чтобы избежать неправильного толкования того, какая переменная является независимой при вычислении частной производной, будем заключать символ частной производной в скобки и помещать внизу скобок ту величину, которая при частном дифференцировании остается постоянной. Таким образом,

(∂ E/∂ T)V

означает частную производную E по T при постоянном V; причем T и V взяты в качестве независимых переменных. Эта производная отличается от частной производной (∂ E/∂ T)P  , при взятии которой остается постоянным давление P. (3)

Рассмотрим теперь бесконечно малый процесс, т.е. процесс, при котором независимые переменные изменяются на бесконечно малые величины. Для такого процесса 1-й закон термодинамики можно переписать в виде