Конус, и все что с ним связано

Конус, и все что с ним связано

Файл : konus.doc (размер : 89,088 байт)

КОНУС

Понятие конуса: тело, ограниченное конической поверхностью и кругом с границей L, называется конусом. Коническая поверхность называется боковой поверхностью конуса, а круг – основанием конуса

Получение конуса: конус может быть получен вращением прямоугольного треугольника вокруг одного из его катетов.

Сечение конуса: если секущая плоскость проходит через ось конуса, то сечение представляет собой равнобедренный треугольник, основание которого – диаметр основания конуса, а боковые стороны – образующие конуса. Это сечение называется осевым.

Если секущая плоскость перпендикулярна к оси ОР конуса, то сечение конуса представляет собой круг с центром О1, расположенной на оси конуса.

Площадь поверхности конуса: разверткой боковой поверхности конуса является круговой сектор, радиус которого равен образующей конуса, а длина дуги сектора – длине окружности основания конуса. За площадь боковой поверхности конуса принимается площадь ее развертки.

где α – градусная мера дуги АВА1

откуда EMBED Equation.3

Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадью полной поверхности конуса называется сумма площадей боковой поверхности и основания.

Усеченный конус, его получение и площадь:

Усеченный конус может быть получен вращением прямоугольной трапеции вокруг ее боковой стороны, перпендикулярной к основаниям.

Площадь боковой поверхности усеченного конуса равна произведению полусуммы длин окружностей оснований на образующую.

Ось конуса

Р

EMBED Word.Picture.8

вершина

образующие

Боковая поверхность

r

А

С

С1

С2

EMBED Equation.3

Р

А

В

Р

А

В

А1

EMBED Equation.3

Р

боковая

поверхность

Основания

конуса

образующая