Комплексные числа

Файл : complex numbers.doc (размер : 198,656 байт)

Средняя общеобразовательная школа №1 11 класс

“Помимо и даже против воли того или другого математика, мнимые числа снова и снова появляются на выкладках, и лишь постепенно, по мере того как обнаруживается польза от их употребления, они получают более и более широкое распространение” Ф. Клейн.

Автор: Исаев Рома (полная версия реферата и много других полезных материалов на моём сайте http://raycom.narod.ru/) Обязательно загляние!

Учитель: Моторина Дина Юрьевна

Дубна, 2002

План:

1. Введение 2

2. История возникновения комплексных чисел 3

а) Развитие понятия о числе 3

б) На пути к комплексным числам 4

в) Утверждение комплексных чисел в математике 5-6

3. Комплексные числа и их свойства 7

а) Понятие комплексного числа 7

б) Геометрическое изображение комплексных чисел 8-9

в) Тригонометрическая форма комплексного числа 9

4. Действия с комплексными числами 10

а) сложение 11

б) вычитание 11

в) умножение 10-11

г) деление 11

5. Решение уравнений с комплексными переменными 12-13

6. Приложение 14

7. Заключение 15

8. Список литературы 15

Введение

Решение многих задач физики и техники приводит к квадратным уравнениям с отрицательным дискриминантом. Эти уравнения не имеют решения в области действительных чисел. Но решение многих таких задач имеет вполне определенный физический смысл. Значение величин, получающихся в результате решения указанных уравнений, назвали комплексными числами. Комплексные числа широко использовал отец русской авиации Н. Е. Жуковский (1847 – 1921) при разработке теории крыла, автором которой он является. Комплексные числа и функции от комплексного переменного находят применение во многих вопросах науки и техники.

Цель настоящего реферата знакомство с историей появления комплексных чисел, их свойствами, действиями над ними, а также с решением уравнений с комплексным переменным.

История возникновения комплексных чисел

1. Развитие понятия о числе

Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.

В III веке Архимед разработал систему обозначения вплоть до такого громадного как . Наряду с натуральными числами применяли дроби - числа, составленные из целого числа долей единицы. В практических расчетах дроби применялись за две тысячи лет до н. э. в древнем Египте и древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что “… элементы чисел являются элементами всех вещей и весь мир в челом является гармонией и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, для того чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно.