Справочник по геометрии (7-9 класс)

Справочник по геометрии (7-9 класс)

Файл : ref-17360.DOC (размер : 108,032 байт)

Выполнил:

ученик 9А класса

средней школы № 135

Матвеев Евгений.

Руководитель проекта:

Очеретина Т.В.

Казань 2004 г.

7 класс.

Глава I.

Точки, прямые, отрезки.

Через любые две точки Если две прямые имеют общую

можно провести прямую, точку, то они пересекаются.

и притом только одну.

Прямая а и точки А и В.

Прямая а и b пересекаются в точке О.

Две прямые либо имеют только одну общую точку,

либо не имеют общих точек.

Угол.

Угол – это геометрическая фигура, Угол называется развёрнутым, которая состоит из точки и двух лучей, если обе его стороны

исходящих из этой точки. лежат на одной прямой.

Угол с вершиной О и сторонами h и k. Развёрнутый угол с вершиной С

и сторонами p и q.

Развёрнутый угол = 180º; Неразвёрнутый угол < 180º .

Луч, исходящий из вершины угла и Два угла, у которых одна общая

делящий его на два равных угла, сторона общая, а две другие

называется биссектриса угла. являются продолжениями одна

другой, называются смежными.

Два угла, называются вертикальными,

если стороны одного угла являются Сумма смежных углов = 180º.

продолжениями сторон другого.

Две пересекающиеся прямые

Вертикальные углы равны. называются перпендикулярными,

если они образуют 4 прямых угла.

Глава I I.

Треугольники.

Треугольник – геометрическая фигура, РАВС = АВ+ВС+СА.

кот-ая состоит из 3 точек, не лежа-

щих на 1 прямой, соединённых отрезками.

В равных треугольниках против

Треугольник с вершинами А, В, С и соответственно равных сторон

Сторонами а, b, c. лежат равные углы, также против

соответственно равных равных

углов лежат равные стороны.

Теорема: Если 2 стороны и угол Теорема: Из точки, не лежа-

между ними 1-го треугольника щей на прямой, можно провести

соответственно равны 2 сторонам перпендикуляр к этой, и притом

и углу между ними другого только один.

треугольника, то треугольники равны.

Отрезок, соединяющий вершину треуг- Отрезок бисс-сы угла треуг-ка,

ка с серединой противоположной сто- соединяющий вершину треуг-ка

роны, называется медианой треуг-ка. с точкой противоположной сторо- ны, называется бисс-сой треуг-ка.

Перпендикуляр, проведённый из верши-

ны треуг-ка к прямой, содержащей Треуг-к, у кот-го 2 стороны равны,

противоположную сторону, называ- называется равнобедренным.

ется высотой треуг-ка.

Теорема: В равнобедренном треуг-ке

ВН - высота треуг-ка АВС. углы при основании равны.

Теорема: В равнобедренном Высота равнобедренного треуг-ка, про-