Вероятностные или статистические законы

Файл : doclad.doc (размер : 39,936 байт)

Министерство образования РФ

Самарская государственная экономическая академия

Реферат (отработка семинара №5).

Вероятностные или статистические законы

Выполнил: студент СГЭА факультета

систем управления группы М.О.-1

1 курса Манагаров Р.И.

Проверил: Мирошников Юрий Фёдорович

Самара 2002

Свое название эти законы получили от характера той информации, которая используется для их формулировки и получения заключения из нее. Вероятностными они называются потому, что заключения, основанные на них, не следуют логически из имеющейся информации, а потому не являются строго определенными и однозначными. Поскольку сама информация при этом носит статистический характер, то часто такие законы называют также статистическими, и этот термин получил в науке значительно большее распространение.

Тем не менее использование термина «вероятность» для характеристики статистических законов более обоснованно с теоретической точки зрения.

Возникает вопрос: о какой вероятности вдет речь в данном случае?

В настоящее время существует по крайней мере три интерпретации этого термина. Первая из них связана с классическим периодом развития теории вероятностей, когда вероятность события определялась как отношение числа случаев, благоприятствующих появлению события, к общему числу всех возможных случаев. Такое определение мы встречаем у одного из основоположников классической теории вероятностей — выдающегося французского математика П.С. Лапласа.2 С помощью такого определения легко подсчитать вероятности, или шансы, появления события в азартных играх, из анализа которых и появилась сама теория. Однако правила азартных игр специально построены таким образом, чтобы шансы игроков были равновозможными, но в природе и обществе равновозможные события встречаются редко. Поэтому для количественной оценки возможности появления тех или событий необходимо было другую интерпретацию.

Со временем ученым действительно удалось найти ее путем сравнения числа появлений исследуемого события к общему числу всех наблюдений. Действительно, чем чаще происходит событие, тем больше вероятность его появления при данных условиях наблюдения. Очевидно, что численное значение вероятности при таком определении зависит от количества наблюдений, т.е. от относительной частоты появления события. Поэтому чем больше сделано наблюдений, тем точнее будет вычислена и вероятность события. Исходя из этого, некоторые ученые предложили рассматривать вероятность события как предел его относительной частоты при бесконечном числе наблюдений. Поскольку такое количество наблюдений практически осуществить невозможно, то многие теоретики, и тем более практики решили определять вероятность как отношение числа появления интересующего события к общему числу всех наблюдений, когда количество последних достаточно велико. Эта величина в каждом конкретном случае должна определяться условиями конкретной задачи, т.е. вероятность Р (А) равна:

Р(А)=т/п,                                                               

где т — число появлений интересующего события, a n — число всех наблюдений.(1)

Указанное определение вероятности называют также частотным, поскольку в нем фигурирует понятие относительной частоты при длительных наблюдениях. Последние анализируются обычно статистическими методами. Очевидно, что при статистической, или частотной, интерпретации нельзя говорить о вероятности отдельного, единичного события, которое не обладает частотой. Поэтому вероятность при такой интерпретации относится к некоторой группе событий. Из такого рассмотрения ясно, что волновая функция в квантовой механике определяет параметры будущего состояния системы «в среднем», т.е. не указывает, например, определенное значение координат ее элементов, а только тот интервал, в котором они могут находиться. Это обстоятельство часто характеризуют термином «вероятностное распределение».(3)

Частотная, или статистическая, интерпретация вероятности получила наиболее широкое применение в естественных и технических науках, а в последние десятилетия также в социальном и гуманитарном познании. Это объясняется прежде всего тем, что реальные системы в основном состоят из большого количества элементов, связи между которыми имеют сложный характер и в которых немалую роль играют случайные факторы, от которых нельзя отвлечься, как это делают в классической механике. Тем не менее и для характеристики процессов в таких системах можно найти некоторые регулярности, которые дают возможность строить вероятностные прогнозы их будущего поведения.(1)