Контроль качества сгорания топлива

(2)

где К — коэффициент, характеризующий конструкцию реакционного объема; ( — коэффициент, характеризующий полноту сгорания; С — концентрация определяемого компонента; q — теплота его сгорания.

Во втором варианте пробу АГС пропускают через камеру, и на насыпном слое катализатора протекает реакция, в результате которой повышается его температура, являющаяся функцией концентрации определяемого компонента пробы АГС:

(7)

где Q — расход пробы АГС; а и b— коэффициенты, учитывающие характер теплообмена в реакционной зоне.

Температуру катализатора можно измерить, например, термопарой, сравнительный спай которой помещается в потоке АГС до катализатора, а измерительный спай — непосредственно в катализаторе.

Для термохимического газоанализатора необходимо в качестве материала для ЧЭ использовать материал со значительным температурным коэффициентом сопротивления (ТКС). Обычно применяют платину, так как она обладает высокой химической инертностью, сравнительно высоким ТКС, линейной зависимостью ТКС от температуры (до 1200 °С). Сочетание высокой каталитической активности с химической инертностью позволяет также широко использовать платину в качестве материала для ЧЭ термохимических газоанализаторов, одновременно выполняющих роль катализатора.

В качестве чувствительного элемента применяют химически чистую платиновую проволоку ПЛ-3, обладающую оптимальными свойствами по испарению и рекристаллизации. Для стабилизации каталитических свойств поверхности платины чувствительный элемент после изготовления подвергают специальной обработке — старению и активации.

Проволочные чувствительные элементы имеют ряд недостатков, поэтому в настоящее время созданы чувствительные элементы на носителях, где функции терморезистора и нагревателя разделены частично или полностью.

Измерительные ячейки термохимического газоанализатора приведены на рис. 3.

Рис. 3. Измерительные ячейки термохимического газоанализатора:

а — без катализатора: 1 — платиновая нить; 2 — держатель; 3 — измерительная ячейка;

б — чувствительный элемент расположен в катализаторе: 1 — чувствительный элемент; 2 — измерительная ячейка; 3 — катализатор; 4 — термостат;

в — чувствительный элемент расположен в керамической трубке; 1 — камера; 2 — катализатор; 3—электриче​ская спираль; 4 — чувствительный элемент; 5 — керамическая трубка

В ячейке (рис. 3, а) проба АГС проходит через измерительную ячейку 3, в которой размещен ЧЭ в виде платиновой нити 1, укрепленной на держателях 2. Платиновая нить нагревается электрическим током до температуры, при которой происходит реакция. Выделившаяся теплота сгорания повышает температуру нити, увеличение температуры пропорционально концентрации определяемого компонента. Повышение температуры измеряется по изменению сопротивления нити, включенной, как правило, в схему электрического четырехплечего моста.

В ячейке (рис. 3, б) предусмотрено использование катализатора 3, в котором размещен ЧЭ 1. Обычно такая измерительная ячейка 2 размещается в термостате 4. При протекании пробы АГС через измерительную ячейку на катализаторе происходят соответствующая реакция, сопровождающаяся выделением тепла. Изменение температуры катализатора измеряется ЧЭ. Такой тип измерительной ячейки реализован в газоанализаторе ТХГ-5, где используются две измерительные ячейки: рабочая, через которую пропускают пробу АГС, и сравнительная с инертным газом.

Ячейка (рис. 3, в) представляет собой камеру 1, обогреваемую электрической спиралью 3. В камере расположена керамическая трубка 5, часть внешней поверхности которой покрыта катализатором 2. В керамической трубке находится ЧЭ 4, измеряющий ее температуру. Такой тип измерительной ячейки используют при создании газоанализатора на кислород в азоте.

Для обеспечения термохимического эффекта к пробе АГС прибавляют водород, являющийся вспомогательным газом для протекания реакции Н+1/2О2 = Н2О.

В измерительную ячейку помещена фарфоровая трубка, обогреваемая электрическим током. Каталитическое сжигание водорода происходит на измерительных спаях термостолбиков («10 термопар, соединенных последовательно).

Преимущества термохимического метода: высокая чувствительность и возможность определять концентрации практически всех горючих газов и паров. Недостатки — вероятность отравления чувствительного элемента каталитическими ядами, а также потребность во вспомогательном газе.