Контроль качества сгорания топлива

Расщепление линий поглощения в электрическом поле (Штарк-эффект) используют для определения полярных молекул, например, аммиака или диоксида серы . При этом в переменное электрическое поле помещают абсорбционную кюве​ту с анализируемым газом.

Остановимся на специальных способах обработки регистриру​емого сигнала.

Дифференциальный метод обработки аналитического сигнала - метод производной - основан на измерении первой или второй производной от меняющегося по гармоническому закону сигнала приемника. Такая методика обработки аналитического сигнала позволяет выделять слабые линии поглощения на сильном фоне и тем самым улучшать аналитические характеристики метода за счет увеличения отношения полезного сигнала к шуму. Так, в работе [7] показаны сравнительные возможности различных методик обработки регистрируемого сигнала: большие концентрации определяли методом прямого детектирования, средние по первой, а малые до 10-7-10-8% (мол.) по второй производным.

Интегральный метод обработки аналитического сигналаметодучета мешающих на​ложений основан на исследовании характера и интенсивности спектров поглощения анали​зируемых газов в некоторой области длин волн и учете их взаимных наложений. Такая методика обработки сигналов весьма трудоемка и практически невозможна без применения ЭВМ. Наиболее простой способ при анализе сложных технологических газов, где наложения учитывали путем решения системы уравнений, характеризующих вклад в поглощение на трех регистрируемых длинах волн от основных компонентов газовой смеси.

Рассмотренные нами методы обработки регистрируемого сигнала, наряду с прямым детектированием изменения интенсивности зондирующего излучения, прошедшего поглощающую газовую среду, широко используют в различных схемах абсорбционных газоанализаторов.

Аппаратура

Важнейшие элементы абсорбционных газоанализа​торов это источники и приемники зондирующего излучения; их мы и рассмот​рим наиболее подробно. Оптические схемы газоанализаторов довольно просты и мы остановимся лишь на общем описании некоторых из них.

Источники зондирующего излучения

Для решения разнообразных задач в аб​сорбционных газоанализаторах используют различные источни​ки зондирующего излучения: газоразрядные, тепловые, когерент​ные. По характеру излучения их можно разделить на источники сплошного, линейчатого и монохроматического излучения в УФ-, видимом и ИК- спектральном диапазонах.

Тепловые источники характеризуются сплошным спектром излучения в ИК диапазоне, высокой стабильностью излучаемой мощности, малым потреблением энергии и большими сроками эксплуатации. Используют несколько разновидностей таких источников:

глобар, представляющий собой стержень из карбида кремния; рабочая температура ≈1300 К;

штифт Нернста, представляющий собой стержень, содержа-* щий смесь оксидов циркония, тория, иттрия; обычная рабочая температура ≈1700 К;

лампы накаливания с вольфрамовой или нихромовой спи​ралью, нагретой до 1000-1100 К, излучающие в видимой и ближней ИК-областях спектра .

Газоразрядные источники характеризуются линейчатым спек​тром излучения в УФ-, видимом и ближнем ИК-диапазоне длин волн, а также сплошным спектром в УФ-области спектра. К источникам этого типа относятся:

водородные или дейтериевые лампы, представляющие собой стеклянные колбы с кварцевыми окошками, заполненные газом при давлении в несколько сотен Па; лампы являются источниками сплошного спектра в видимой и УФ (до200 нм)-областях спектра;

высокочастотные безэлектродные лампы, заполненные инертным газом при давлениях в несколько сотых долей Па и вещест​вом-источником атомных паров; лампы являются источниками линейчатого спектра излучения в видимой и УФ-об​ласти;

ртутные газоразрядные лампы низкого, высокого или сверх​высокого давления, представляющие собой кварцевые трубки с впаянными электродами и заполненные аргоном и ртутью;

лампы являются источниками линейчатого спектра излуче​ния наиболее интенсивные линии которого имеют длины волн: 253,7; 313; 314; 365,5; 404,7; 435,8; 546,1; 577 и 579,1 нм ;

лампы с полным катодом , являющиеся источ​никами линейчатого спектра излучения, характер которого опре​деляется элементами, входящими в состав катода или напылен​ного на его поверхность материала; атомы, образовавшиеся при испарении материала нагретого катода или вследствие распыле​ния его поверхностных слоев под воздействием ионной бомбар​дировки, возбуждаются в тлеющем разряде постоянного тока в буферном газе; эти лампы используют при анализе воздуха на содержание металлических примесей в виде металлоорганических соединений, аэрозолей и паров (например ртути).