Контроль качества сгорания топлива

Четырехкамерный газоанализатор выпускает американская фирма «Mine Safety Appliances Company», а тдкже фирма «Sie​mens» (ФРГ).

Недостатки — сложность, низкая надежность, низкий уровень унификации, сложность технологии изготовления и наладки, не​достаточно высокие метрологические характеристики, трудность реализации частных задач, обусловленных большим диапазоном воздействия давления пробы АГС и ужесточением требований при их использовании на подвижных объектах.

Таким образом, сопоставление однокамерных (кольцевых) и многокамерных систем свидетельствует в пользу однокамерных. Вместе с тем нельзя признать кольцевую камеру единственно приемлемой для использования в базовой конструкции унифици​рованного термомагнитного газоанализатора на кислород, по​скольку и она не является универсальной.

В СССР разработана так называемая О-образная камера, обладающая рядом преимуществ по сравнению с классической кольцевой измерительной камерой.

О-образная измерительная камера состоит из двух парал​лельно расположенных стеклянных трубок с двумя секциями, выполняющих одновременно функции терморе​зисторов — термоанемометров.

Измерительная камера работает следующим образом. Проба АГС втягивается в термоанемометр, находящийся под полюсами магнитной системы. При этом газ, нагреваясь, теряет свои маг​нитные свойства и выталкивается более холодным газом, про​должающим поступать в верхнюю полость, где происходит по​стоянная смена газа.

В О-образном контуре камеры создается поток термомаг​нитной конвекции, который изменяет сопротивление секций тер​моанемометров, включенных в мостовую схему. По разбалансу моста судят о концентрации кислорода в пробе АГС.

В термоанемометрах действуют потоки термомагнитной и теп​ловой конвекции. Результирующий поток в О-образном контуре определяют по формуле:

Fк = Fм - Ft1+Ft2(33)

где FK — результирующий поток О-образного контура; Fм — поток термомаг​нитной конвекции; Ft1— поток тепловой конвекции 1-го термоанемометра; Ft2 — поток тепловой конвекции 2-го термоанемометра.

В зависимости от соотношений потоков тепловых конвекции Ft1 и Ft2 при одной и той же конструкции измерительной камеры можно получить различные функциональные решения.

Так, при достижении равенства Ft1= Ft2, обеспечиваемого соответствующим симметрированием секций термоанемометров, можно достичь диапазона, нижний предел которого начинается с нуля, и достигаются условия, при которых изменение угла наклона в широком интервале не влияет на показания прибора. На самом деле, при равенстве Ft1= Ft2 в О-образном контуре действует только термомагнитная конвекция, не зависящая от угла наклона. Это обстоятельство придает О-образной камере новые качества, расширяющие область ее использования.

При варьировании значением Ft2 в широких пределах можно обеспечить Fк = 0 на различных участках диапазона измерения.

При Ft1 = Ft2 нуль потоков, или Fк = 0, достигается при Fм =0, т. е. в нулевой точке диапазона измерения (концентрация кисло​рода в пробе АГС равна нулю). При изменении давления пробы АГС погрешности в этой точке диапазона измерения не появ​ляются.

Значение Fк = 0 можно реализовать и в любой другой точке диапазона измерения, обеспечив равенство Fм = Ft1 — Ft2 при определенной концентрации кислорода в пробе АГС.

Универсальность О-образной камеры предопределяет раз​личные варианты схем включения при неизменных параметрах самой камеры.

На рис. 13, а изображена схема включения О-образной камеры, в которой один термоанемометр расположен под магнитными наконечниками и используется в качестве измерителя, а второй термоанемометр — в качестве нагревателя для обеспечения компенсации потоков термомагнитной и результирующей тепловой конвекции в одной из точек диапазона измерения.

Рис. 13. О-образная камера:

а — с двумя термоанемометрами: одним измерительным, другим нагревательны-м; б — с двумя измерительными термоанемометрами

Для увеличения чувствительности камеры и одновременного обеспечения компенсации потоков предпочтительнее включать камеру по схеме, изображенной на рис. 23, б. Здесь оба термо​анемометра используются в качестве измерительных, а второй термоанемометр одновременно выполняет и функции нагревателя, создающего дополнительный поток тепловой конвекции для обеспечения компенсации потоков. При этом наиболее эффективно в качестве измерителя второй термоанемометр будет использо​ваться для диапазонов, нижний предел которых начинается с нуля, так как протекающий через него ток практически не отличается от тока, протекающего через первый термоанемометр, и менее эффективно для диапазонов с подавленным нулем, особенно в узких пределах измерения.