Контроль качества сгорания топлива

Контроль качества сгорания топлива

2H2 + 4OH- →4Н2О + 4е-

4е-+О2+2Н2О→4ОН-(19)

В сумме эти две реакции дают реакцию (18).

Основными элементами топливного элемента являются: анод, катод и электролит, т. е. те же элементы, что и в любом электро​химическом анализаторе.

При определении концентрации газов и паров с помощью топливных элементов электролитом могут служить как жидкие электролиты, так и твердые . При использовании твердого носителя ионов, например синтетической полимерной ионообмен​ной мембраны, устраняются недостатки, присущие ячейкам с жидким электролитом. Наличие в полимерной структуре мембраны неподвижных ионных групп и одновременно находящихся в равновесии с ними и способных к обмену подвижных ионов, используемых для переноса тока, способствуют тому, что концен​трация ионов в отмытой мембране и ее проводимость не изме​няются в процессе работы ячейки длительное воемя. Упрощаетсятакже изготовление электродов, так как роль последних могут выполнять металлические сетчатые электроды, прижатые к боко​вым поверхностям мембраны с обеих ее сторон.

Рис. 9. Схема топливного элемента, используемого в качестве газоанализатора;

/—ионообменная мембрана; 2, 4—рабочая и сравнительная камеры; 3—электроды

Схема топливного элемента, используемого для определения концентрации газообразных веществ, показана на рис. 9. Ионо​обменную мембрану 1 вместе с плотно прижатыми к ней с обеих сторон металлическими активными сетчатыми электродами 3 по​мещают в камеру и таким образом разделяют ее на две части: рабочую 2 и сравнительную 4. В рабочую камеру 2 поступает проба АГС, содержащая определяемый компонент, а в сравни​тельную подается чистый газ, являющийся восстановителем или окислителем.

При определении концентрации молекулярного кислорода в сравнительную камеру можно подавать, например водород.

При одновременной подаче с постоянными скоростями пробы АГС с одной стороны и чистого газа (окислителя или восстанови​теля) с другой — на границе раздела мембрана — активирован​ные электроды возникает электрохимическая реакция «холодного горения» (реакция происходит при комнатной температуре) определяемого компонента, сопровождаемая появлением разности потенциалов между электродами. Эта разность потенциалов, или электрического тока, является функцией концентрации определяе​мого компонента пробы АГС.

Оптические методы.

Молекулярный кислород в ближней ИК-области спектра (от 0,75 до 15 мкм) не поглощает излучение, в видимой области спектра молекулярный кислород слабо поглощает; в УФ-области спектра молекулярный кислород имеет полосы поглощения от 195 до 130 нм.

В области от 130 до ПО нм молекулярный кислород прозра​чен, а от 110 до 30 нм лежит область сплошного поглощения молекулярного кислорода. Максимум поглощения излучения молекулярного кислорода расположен на длине волны около 145 нм .

Оптико-акустические газоанализаторы

Оптико-акустические газоанализаторы по принятой классифи​кации следует отнести к оптическим. Они основаны на измерении степени поглощения газом прерывистого потока инфракрасной рдиации. Излучения инфракрасной области спектра поглощаются газами, молекулы которых состоят из двух или большего числа различных атомов и ионов. В теплоэнергетике их применяют для измерений СО2; СО; СН4.

Оптико-акустический эффект состоит в следующем: при воздей​ствии на газ (находящийся в замкнутом объеме) прерывистым потоком инфракрасной радиации происходит пульсация температуры, а следовательно, и давления этого газа. Эта пульсация, воздейст​вуя на микрофон, вызывает «звучание» газа.

На рис. 10 приведена принципиальная схема газоанализатора. Инфракрасное излучение от двух источников 1 направляется по двум каналам (рабочему и сравнительному),проходя при этом через обтюратор 2,который шесть раз в секунду прерывает оба потока одно​временно. Прерывистые потоки излучения проходят через фильтровые камеры 3 заполненныеобычно данной смесью газа, из которой исключен анализируемый компонент. Наличие фильт​ровых камер обеспечивает уменьшение погрешности за счет возможного частичного наложенияспектров поглощения анализируемой и не анализируемой составляющей газовой смеси. Далее поток радиации, направленный по рабочему каналу, проходит ра​бочую камеру 4, через которую непрерывно пропускается анали​зируемая газовая смесь. Анализируемая составляющая газа по​глощает часть энергии, определяемой поглощающей способностью этого газа. Остаток лучистой энергии после отражения от пла​стины 5 поступает в правую область луче приемника 6. Лучистый поток, проходящий по сравнительному каналу, после фильтровой камеры 3 попадает в компенсационную камеру 8. Компенсацион​ная камера заполнена анализируемой составляющей смеси. На по​верхности этой камеры имеются окна из специального стекла (Li+F) 7 свободно пропускающего инфракрасные лучи. Внутри компенсационной камеры имеется отражательное зеркало, которое направляет лучистый поток в левую область луче приемника 6. Если в правую и левую области луче приемника поступают различные по величине прерывистые потоки излучения, то конденсаторный микрофон 15, помещенный в луче приемнике, создает звуковой сигнал, который после усиления усилителем 14 воздействует на реверсив​ный двигатель 12. Реверсивный двигатель с помощью редуктора 11 перемещает отражательное зеркало 13 до тех пор, пока поток сравнительного канала не уравняется с потоком, поступающим в луче приемник по рабочему каналу. При равенстве этих потоков звучание микрофона прекращается. Перемещение отражательного зеркала внутри уравнительной камеры вызывает изменение ее объема, т. е. изменение пути движения газа, что приводит к измене​нию поглощения лучистой энергии. Одновременно с редуктором перемещается движок реохорда 9 вторичного прибора 10.