Великие законы сохранения

Файл : ROM-0156.DOC

Министерство общего и профессионального образования

Российской Федерации

Московский Государственный Строительный Университет

Кафедра физики

Курсовая работа

по теме:

ВЕЛИКИЕ ЗАКОНЫ СОХРАНЕНИЯ

Выполнила

Денисова М.В.

ЭОУС-1-7

Проверила

Фомина Г.В.

Москва 1998

СОДЕРЖАНИЕ

Сохраняющиеся величины...................................................................3

Закон сохранения импульса.................................................................3

Энергия и работа...................................................................................6

Консервативные силы...........................................................................8

Потенциальная энергия.........................................................................8

Закон сохранения энергии.....................................................................9

Закон сохранения момента импульса..................................................11

Список используемой литературы......................................................................16

СОХРАНЯЮЩИЕСЯ ВЕЛИЧИНЫ

Совокупность тел, выделенных для рассмотрения, называется механической системой. Тела системы могут взаимодействовать как между собой, так и с телами, не входящими в систему. В соответствии с этим силы, действующие на тела системы, подразделяются на внутренние и внешние. Внутренними называют силы, с которыми тела системы действуют друг на друга, внешними - силы, обусловленные воздействием тел, не принадлежащих системе. Система, в которой внешние силы отсутствуют, называется замкнутой.

Для замкнутых систем остаются постоянными (сохраняются) три физические величины: энергия, импульс и момент импульса. Соответственно имеются три закона сохранения: закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса. Эти законы тесно связаны со свойствами времени и пространства.

Кроме названных, есть еще ряд законов сохранения (например, закон сохранения электрического заряда). Законы сохранения являются фундаментальными законами природы.

Рассматриваемые в механике законы сохранения энергии, импульса и момента импульса оказываются точными законами и имеют всеобщий характер - они применимы не только к механическим явлениям, но и вообще ко всем явлениям природы, в частности они соблюдаются в релятивистской области и в мире элементарных частиц.

Законы сохранения не зависят от природы и характера действующих сил. Поэтому с их помощью можно делать ряд важных заключений о поведении механических систем даже в тех случаях, когда силы остаются неизвестными.

ЗАКОН СОХРАНЕНИЯ ИМПУЛЬСА

Рассмотрим систему, состоящую из N частиц (материальных точек). Обозначим через Fik силу, с которой k-я частица действует на i-ю (первый индекс указывает номер частицы, на которую действует сила, второй индекс - номер частицы, воздействием которой обусловлена эта сила). Символом Fi обозначим результирующую всех внешних сил, действующих на i-ю частицу. Напишем уравнения движения всех N частиц:

=F12 + F13 + ... + F1k + ... + F1N + F1=,

=F21 + F23 + ... + F2k + ... + F2N + F2=,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=Fi1 + Fi2 + ... + Fik + ... + FiN + Fi =,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

=FN1 + FN2 + ... + FNK + ... +FN,N-1 + FN =

(pi – импульс i-й частицы).

Сложим вместе эти уравнения. Слева получиться производная по времени от суммарного импульса системы: